УДК 539.211:539.219.3

ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ЭЛЕКТРОННОГО ОБЛУЧЕНИЯ НА СОСТАВ ПОВЕРХНОСТИ СИЛИКАТНОЙ ПОЛУПРОВОДЯЩЕЙ ГЛАЗУРИ

© 2013 г. И. Н. Сергеев, В. К. Кумыков, В. А. Созаев

Кабардино-Балкарский государственный университет, Нальчик, Россия Поступила в редакцию 02.04.2013 г.

Методами оже-электронной спектроскопии и рентгеновской диагностики материалов исследованы элементный и фазовый состав полупроводящей глазури на подложке из корундовой керамики ВК 94-1. Показано влияние температуры (575–975 К) и электронного облучения в сверхвысоком вакууме на состав поверхности полупроводящего покрытия.

DOI: 10.7868/S0207352813110188

ВВЕДЕНИЕ

Как известно, нанесение на поверхность электрокерамических изделий тонкого стекловидного покрытия (глазури) значительно повышает их механическую и химическую стойкость, улучшает электроизоляционные свойства, а также снижает влагопоглощение и газопроницаемость. Среди электротехнических покрытий особое место занимает полупроводящая глазурь, предназначенная для выравнивания электрического поля на поверхности высоковольтных керамических изоляторов, в том числе в ускорителях электронов. Она представляет собой композиционный материал преимущественно с электронным характером проводимости, состоящий из 20-40 мас. % электропроводящих кристаллических компонентов и 60-80 мас. % стеклообразующих оксидов. Нанесение полупроводящих глазурей является одним из наиболее эффективных методов борьбы с электрическим разрядом на поверхности изолятора, работающего в условиях загрязнения и увлажнения. Однако такие глазури, как и стекла, подвержены коррозии и электромиграции подвижных ионов, а при низкой термоустойчивости и тепловому удару [1]. В случае, когда глазурованная поверхность обращена в вакуум и бомбардируется заряженными частицами, проявляются радиационностимулированные эффекты [2-7]. В связи с этим актуальность исследований, направленных на повышение химической, термической и радиационной стойкости глазурованной поверхности, вполне очевидна.

Состав приповерхностных слоев, формирующихся на стекле или глазури при термо- и электронностимулированной сегрегации, контролируется, как правило, методами оже-электронной (ОЭС) и рентгеновской фотоэлектронной спектроскопии (РФЭС), имеющими высокую поверхностную чувствительность. В связи с тем что фотоны по сравнению с электронами в меньшей степени разрушают исследуемую поверхность, предпочтение обычно отдается РФЭС. Однако вредное воздействие зондирующих электронов можно значительно уменьшить, если использовать низкую плотность тока j_p и энергию E_p первичного пучка, малое время воздействия и т.д. [8]. Обзор зарубежных работ по обсуждаемой проблеме, выполненных в последние годы, показывает, что при изучении таких сложных композиционных материалов, как полупроводящие глазури, наиболее перспективно сочетание поверхностно-чувствительных методов (РФЭС, ОЭС, сканирующая зондовая микроскопия) с рентгеноструктурным (РСА) и рентгенофлуоресцентным (РФА) анализами. Так, в работе [9] с применением РФЭС, СТМ и РСА показано, что коррозионная стойкость и долговечность полупроводящей глазури определяются не только структурой, элементным и фазовым составом ее поверхностного слоя, но и топографией (макро- и наношероховатостью) поверхности, а также объемным фазовым составом. Кроме того, вследствие диффузионных процессов, сопровождающих высокотемпературный отжиг изоляторов с сырой глазурью, на электрофизические свойства покрытия влияют параметры отжига, а также структура и состав керамической подложки [10]. Несмотря на актуальность указанной проблемы подобные исследования полупроводящих покрытий, разработанных в России, крайне малочисленны [1]. Целью данной работы является изучение методами ОЭС и рентгеновского анализа взаимосвязи элементного и фазового состава объема полупроводящей глазури, нанесенной на корундовую керамику ВК 94-1, с термо- и электронностимулированным изменением состава глазурованной поверхности.

Рис. 1. Рентгенофлуоресцентный спектр глазурованного покрытия для диапазона длин волн от 0.05 до 0.35 нм.

МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы для исследований представляли собой пластины из корундовой керамики ВК 94-1 размерами $10 \times 10 \times 2$ мм с полупроводящим глазурованным покрытием толщиной ~0.2 мм. Температура размягчения такой глазури выше 1400 К. В состав подложки входят Al₂O₃ (~95 мас. %), SiO₂ (~2.5%), а также оксиды марганца (~2 мас. %) и хрома (~0.5 мас. %). Качественный состав объема глазури определяли рентгенофлуоресцентным методом на анализаторе "Спектроскан МАКС-GV" (Си K_{α} -линия), а фазовый анализ проводили по методу порошков на рентгеновском дифрактометре ДРОН-6.

Влияние нагрева и электронного облучения на состав поверхности глазури изучали методом ОЭС. Образцы перед измерениями обезжиривали и промывали, а финишную очистку их поверхности проводили распылением ионами Ar⁺ в камере электронного спектрометра. Электронностимулированные эффекты исследовали с помощью электронной пушки спектрометра при $T \approx 300$ K, варьируя энергию первичного пучка E_p в интервале 1–2.2 кэВ, а плотность тока на образец j_p от 1 до 2 мА/см². Влияние отжига определяли при ступенчатом нагреве образцов в интервале T = 300 - 975 К и остаточном давлении в камере $p \le 5 \times 10^{-7}$ Па. Температуру контролировали хромель-алюмелевой термопарой, прижатой к глазурованной поверхности, с абсолютной погрешностью ±5 К. В этом случае снижали энергию и плотность тока первичных электронов до ~ 1.8 кэВ и ~ 0.25 мА/см² соответственно, а также сокращали время записи спектров путем использования энергетических окон, что позволило свести к минимуму эффекты зарядки и электронностимулированной десорбции.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

По данным РФА, основными компонентами глазури являются кремний и алюминий, которые представлены в спектре интенсивными рентгеновскими пиками в интервале длин волн $\lambda_{Si} = 0.710 -$ 0.715 нм и $\lambda_{A1} = 0.83 - 0.84$ нм. Кроме того, глазурь содержит (в порядке убывания) Mn, Fe, Ti, Ca, Mg, Cr, Sn и K. На рис. 1 приведен участок рентгенофлуоресцентного спектра от глазурованного покрытия в диапазоне длин волн от 0.05 до 0.35 нм, содержащий только линии элементов добавок. Калию соответствует малоинтенсивный пик с длиной волны $\lambda_{\rm K} \sim 0.375$ нм, поэтому на рис. 1 он не показан. В исходной шихте Si, Al, Ca, Mg и K входят в состав стеклообразующих оксидов, а Fe, Ti, Cr и Sn – в состав электропроводящих оксидов. Коричневый цвет глазури придают оксиды Mn, Fe, и Cr.

Известно, что в процессе высокотемпературного отжига компоненты глазури взаимодействуют между собой и керамической подложкой с образованием новых химических соединений или твердых растворов, при этом исходный фазовый состав существенно изменяется [10]. Полученные нами результаты рентгенофазового анализа для глазури

Рис. 2. Изменение амплитуды оже-пиков SiO₂, CaO, O и C, соответствующих поверхности глазури при нагреве до T = 975 K.

на керамике BK 94-1 согласуются с такими выводами. В рентгенодифракционном спектре глазури, кроме основного "аморфного" пика от стеклофазы, присутствуют пики кристаллических компонентов, однако эти пики соответствуют сложным химическим соединениям с участием Al, Si, Mg и К. Таким образом, разделение компонентов на стеклообразующие и проводящие кристаллические, как это имеет место в данном случае, можно считать условным. С другой стороны, подобная структура рентгенодифракционного спектра, а также наличие электропроводящих компонентов подтверждают полупроводящие свойства глазури.

В ионных многокомпонентных материалах, к которым относится глазурь, движущие силы сегрегации отличаются сложностью и многообразием. Кроме поверхностного натяжения компонентов и упругих напряжений в катионной или анионной подрешетках, на сегрегацию влияет электростатическое взаимодействие ионов между собой и с пространственными зарядами, локализованными вблизи межфазных границ [11]. Прогнозирование и расчет сегрегаций в таких системах представляет собой трудную задачу. По литературным данным, в оксидных керамиках на основе Al_2O_3 при высоких температурах ($T \ge 1500$ K) наблюдается обогащение поверхности Ca, Mg, Si, Ti и другими ионами, а в силикатных стеклах вблизи температуры размягчения (T = 750 - 900 K) на поверхность выходят ионы K, Na, Ba и Ca [9]. Миграция примесей из объема в приповерхностную область при отжиге образцов в вакууме наблюдалась и в [12]. В нашем случае, с учетом данных РФА для объемного состава глазури, можно ожидать сегрегации K, Ca, Mg, Si и Ti, однако в интервале T = 300 - 975 К подвижность ионов Mg, Si и Ti слишком мала, чтобы создать заметное обогащение поверхности.

По данным ОЭС, на поверхности глазури, очищенной ионным распылением, кроме интенсивного оже-пика SiO₂ (63 и 76 эВ), наблюдаются

Рис. 3. Зависимость амплитуды оже-пиков Si (91 эВ) и Ca (290 эВ) от дозы электронного облучения поверхности глазури, T = 300 K.

пики Al₂O₃ (35 и 51 эВ), С (272 эВ), СаО (~290 эВ), TiO₂ (387 и 415 эВ) и О (~507 эВ). Пик SnO₂ (420 эВ) приходится на правое плечо более интенсивного пика TiO₂ и, вследствие малой интенсивности, не прописывается. Низкоэнергетические оже-линии MnO (37 и 47 эВ), Fe₂O₃ (43 и 51 эВ), MgO (32 эВ) и Cr₂O₃ (33 и 45 эВ) накладываются друг на друга и на более интенсивную линию Al_2O_3 , поэтому их интерпретация затруднительна. Несмотря на то что химическое взаимодействие компонентов глазури при отжиге, отмеченное выше, предполагает сдвиги соответствующих оже-линий, наблюдаемые пики регистрируются вблизи эталонных значений для чистых оксидов [13]. Отметим, что в спектре очищенной поверхности отсутствуют признаки серы, а также калия, обнаруженного в объеме глазури методом РФА.

Нагрев образца до 775 К практически не изменяет состав поверхности. Начиная с температуры ~875 К отмечается снижение амплитуды пика С (272 эВ), которое сопровождается ростом интенсивности оже-линий SiO₂ и Al₂O₃. Этот процесс обусловлен, по-видимому, возрастающей диффузией кислорода из объема глазури с последующим окислением и десорбцией поверхностного углерода. При T > 875 К в оже-спектре появляются линии серы (156 эВ) и калия (252 эВ), начинают заметно увеличиваться пики О и СаО. Как и ожидалось, сегрегация Si, Mg и Ti в исследованном интервале температур не наблюдается. Изменение с температурой амплитуды основных оже-линий, соответствующих поверхности глазури, показано на рис. 2.

При выдержке глазури под электронным пучком при комнатной температуре оже-пики SiO₂, Al₂O₃ и CaO изменяются, причем SiO₂ быстрее других. На рис. 3 в качестве примера приведены зависимости амплитуд оже-пиков Si (91 эВ) и Ca

(290 эВ) от дозы электронного облучения. Имеющиеся в литературе данные о том, что неупорядоченные структуры в большей степени подвержеэлектронностимулированной деструкции ны (ЭСД), чем кристаллические [8], подтверждаются результатами наших исследований. Как видно из графиков, деструкция SiO₂ в составе глазури начинается уже при дозах 8×10^{18} эл./см², что в несколько раз превышает скорость ЭСД этого же оксида в составе алюмооксидных керамик ВК 94-1 и УФ-46 [14, 15]. Однако необходимо отметить, что если электронностимулированная деструкция SiO₂ хорошо известна [8], то относительно CaO данные противоречивы. В частности, при электронном облучении монокристалла СаО ЭСД не наблюдалась даже при больших дозах [16], в то время как облучение стекла с примесью СаО приводило к росту оже-пика Са [8]. По-видимому, рост поверхностной концентрации Са связан не с деструкцией его оксида, а с электронно-стимулированной сегрегацией ионов Са+.

ЗАКЛЮЧЕНИЕ

Полученные результаты показывают, что даже при относительно невысоких температурах, соответствующих, например, вакуумной пайке металлокерамических узлов, состав поверхности глазури неконтролируемо изменяется. При нагреве выше 875 К содержание углерода на поверхности снижается, а доля SiO₂ и Al₂O₃ возрастает. Одновременно с этим поверхность обогащается кальцием, калием и серой.

Электронное облучение при комнатной температуре ведет к деградации глазурованной поверхности — приповерхностный слой теряет кислород и обогащается Si и Ca. Скорость электронностимулированной деструкции глазури значительно выше, чем корундовой керамики, при этом наиболее слабым звеном оказываются оксиды кремния. Учет обнаруженных особенностей позволит повысить надежность глазурованных керамических изоляторов, работающих в условиях высокого вакуума. Анализ объемных характеристик глазури проведен в ЦКП "Рентгеновская диагностика материалов" Кабардино-Балкарского госуниверситета.

СПИСОК ЛИТЕРАТУРЫ

- Лебедь К.В. // Сб. тр. XIII Межд. научно-практ. конф. студентов, аспирантов и молодых ученых "Современные техника и технологии". Томск: Изд-во Томского политехн. ун-та. 2007. Т. 1. С. 60.
- 2. *Cannillo V., Esposito L., Rambaldi E. et al.* // J. Eur. Ceram. Soc. 2009. V. 29. № 9. P. 1561.
- Сергеев И.Н., Кумыков В.К., Созаев В.А. и др. / Тр. 11-го Межд. симп. "Порядок, беспорядок и свойства оксидов". Ростов-н/Д: ИПО ПИ ЮФУ, 2008. Т. 2. С. 126.
- 4. *Волков Н.В.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2011. № 3. С. 40.
- 5. Еловиков С.С., Юрасова В.Е., Рыжов Ю.А. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2008. № 11. С. 20.
- Сергеев И.Н., Кумыков В.К., Созаев В.А. / Сб. докл. Харьковской нанотехнологической ассамблеи. Харьков, 2008. С. 85.
- Сергеев И.Н., Кумыков В.К., Созаев В.А. и др. / Тр. 10-го Межд. симп. "Порядок, беспорядок и свойства оксидов". Ростов-н/Д: ИПО ПИ ЮФУ, 2007. С. 91.
- 8. Beam Effects, Surface Topography and Depth Profiling in Surface Analysis / Eds Czanderna A.W. et al. NY.: Plenum Press. 1998. P. 65.
- 9. Ullrich H., Gubanski S.M. // IEEE Transactions Dielectrics and Electrical Insulation. 2003. V. 10. № 3. P. 375.
- 10. *Fröberg L., Hupa L., Hupa M.* // J. Eur. Ceram. Soc. 2009. V. 29. № 1. P. 7.
- 11. *Wynblatt P., Rohrer G.S., Papillon F. //* J. Eur. Ceram. Soc. 2003. V. 23. № 4. P. 2841.
- 12. Гедгагова М.В., Гукетлов Х.М., Кумыков В.К. и др. // Изв. РАН. Сер. физ. 2007. Т. 71. № 5. С. 631.
- 13. Иванов В.Ш., Брытов И.А. // Журн. прикладной химии. 1986. Т. 59. № 11. С. 2439.
- 14. *Сергеев И.Н., Кумыков В.К., Созаев В.А. //* Изв. РАН. Сер. физ. 2008. Т. 72. № 8. С. 1186.
- 15. Сергеев И.Н., Кожокова Ф.М., Кумыков В.К. и др. // Изв. РАН. Сер. физ. 2009. Т. 73. № 7. С. 972.
- 16. *Prutton M., Ramsey J.A., Walker J.A. et al.* // J. Phys. C: Solid State Phys. 1979. V. 12. № 23. P. 5271.

Influence of Temperature and Electronic Irradiation on the Surface Composition of the Silicate Semiconducting Glaze

I. N. Sergeev, V. K. Koumykov, V. A. Sozaev

The element and phase composition of semiconducting glaze based on the alumina ceramics VK 94-1 substrate have been investigated by Auger electron spectroscopy and X-ray diagnostics of materials. The effect of temperature (575–975 K) and electronic irradiation on the surface composition in ultrahigh vacuum was shown.